

Radiation Tolerant Power Converter Design for the LHC

S. Uznanski, M. Brugger, V. Schramm, Y. Thurel, B. Todd

1. Review of LHC Power Converters :

- a. Systems
- b. Radiation Environment
- c. Availability in 2012
- d. Availability in the future

2. Design methodology :

- a. Requirements
- b. Design flow
- c. Component selection
- d. Component characterization tests
- e. Lot acceptance tests

3. Conclusions

Review of LHC Power Converters: Systems

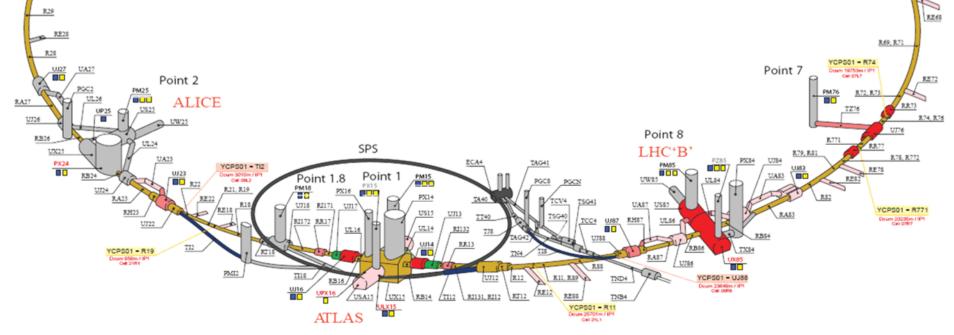
Converter	Orrentites				
Typical Use	Current	Voltage	Quantity		
Main Dipoles		13000	190	8	
Main Quadrupole	13000	10			
Individually Powered Quad Dipoles and Inner Trip	4-6-8000	189			
Orbit Correctors 600A Sextupole correc	600 40		37		
600A Multipole correc	600 10		400		
Orbit Correctors	120	10	290		
Orbit Correctors	60	8	752		
			Total	>1700	
≈1050 in LHC radiation are					
2 0					

Todd,Thurel, CERN'11

Controller = box with electronics

slawosz.uznanski@cern.ch

ARW 2015

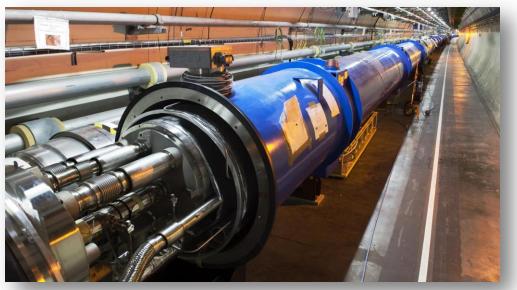

Mixed-Field radiation composed of n, p, pi+, pi- mainly due to

- 1. Direct losses in the accelerator
- 2. Particle collisions at 4 LHC experiments
- 3. Residual gas in the beam pipe

LHC tunnel and cavern areas

- 1. Mixed-field radiation with energies up to several GeV
- 2. Equipped with partially commercial electronics

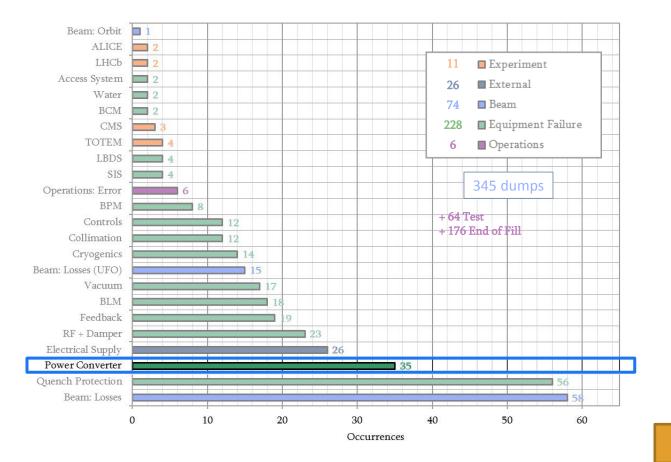
Mixed-Field radiation composed of n, p, pi+, pi- mainly due to


- 1. Direct losses in the accelerator
- 2. Particle collisions at 4 LHC experiments
- 3. Residual gas in the beam pipe

LHC tunnel and cavern areas

- 1. Mixed-field radiation with energies up to several GeV
- 2. Equipped with partially commercial electronics

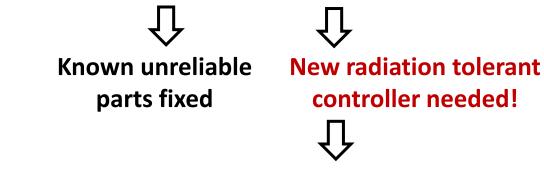
Tunnel



Shielded Location

Hardware failures leading to a beam dump from Post Mortem

After Todd, Evian'12

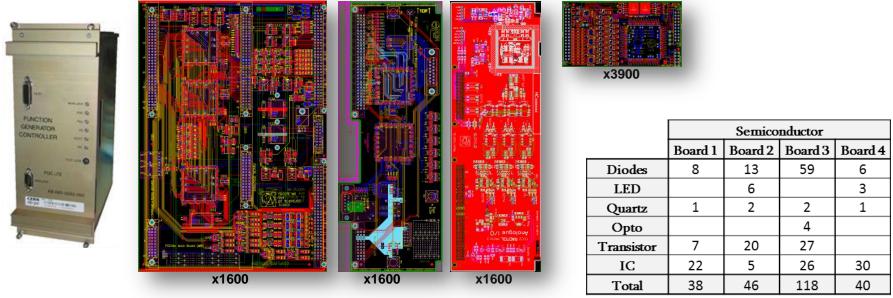


2012 data

	Power		Controller		Unknown	Total
	Electrical	Radiation	Electrical	Radiation	Origin	Total
Run1: 4TeV operation	29	*15 -> 1	5	10	6	65

Post LS1 – increased radiation levels, increased VS load

	Po	Power (roller	Unknown	Total	Total
	Electrical	Radiation	Electrical	Radiation	Origin	TOLAI	
Run2: ±6.5TeV operation	<47	2	5	20	6	74	
Run3: Increasing Radiation	<47	4	5	44	6	98	
HL-LHC: Increasing Radiation	<47	9-18	5	90-190	6	150-260	



	Power		Controller		Unknown	Total
	Electrical	Radiation	Electrical	Radiation	Origin	TOLAT
HL-LHC	<47	9-18	5	<10	6	<80

Radiation Levels Brugger,

New Radiation-Tolerant design on-going optimized for high availability in radiation

0.5M semiconductors (~50 different types) 2.3M electronic components

Design challenges:

- 1. Rad-Tol system for uninterrupted LHC operation (improvement of x20)
- 2. No Rad-Hard ASICs, FPGA-based for flexibility, based on Commerial-Off-The-Shelf (COTS)
- 3. Assure high reliability each module

Standard Design Flow

After Todd, TWEPP'12

Radiation Tolerant Design Flow

Conceptual Design

Component Selection

Radiation Risk Classification

Rad. Characterization Tests

Detailed Design

Prototype Test

Final Design

Lot Acceptance Tests

Industrialization

Fabrication

Pre-series Tests

Board / Unit Testing

Burn-in / Run-in

Installation and Commissioning

Surveillance

Component Selection Process

- 1. Joint work between the design (electrical function)/radiation testing team (component susceptibility)
- 2. Iterative process throughout the design
- 3. Optimization of Bill-of-Materials = huge impact on component qualification

Radiation Risk Classification

- 1. Impossible to extensively test all semiconductors. Minimize risk!
- 2. Classification criteria: Known **susceptibility** to radiation, **Criticality** of failure, **Availability** of component alternatives

Class	Radiation response	Sourcing	Components
Class-0 (potentially sensitive)	Quite resistant or moderate sensitivity to radiation	Easily replacement Different manufacturers and types on the market	Diodes, Transistors
Class-1 (potentially critical)	Potentially susceptible to radiation, not on system's critical path	Substitution possible (list of preferable replacements is defined)	Voltage regulators/ references, DACs, memory
Class-2 (highly critical)	Potentially susceptible to radiation, on system's critical path	Difficult to replace as no equivalents on the market	ADCs, FPGA mixed circuits for field bus

Radiation characterization challenges

- 1. High energies representative to LHC
- 2. Very low failure rates
- 3. High number of components to be tested

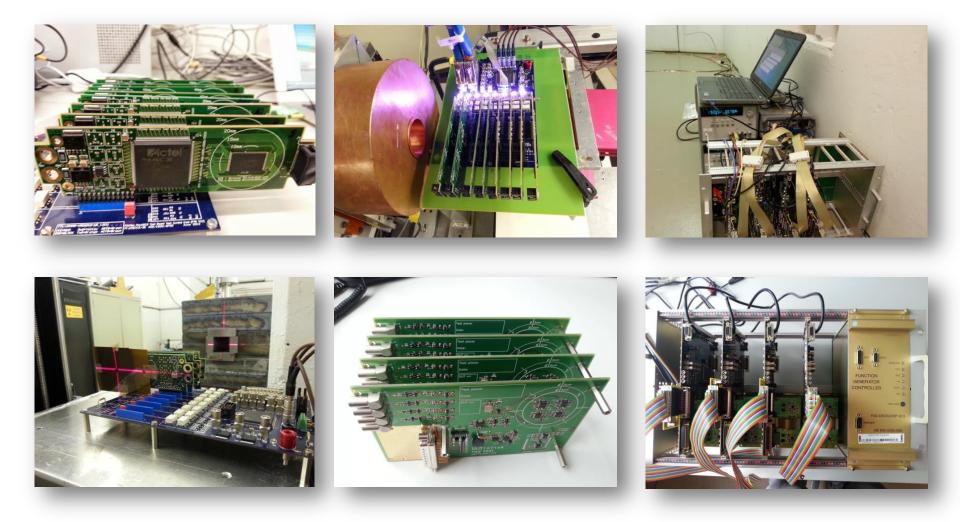
Different procedures developed for different classes

Class	Mixed-Field	Proton (PSI)	Heavy-ion	
Class-0 (potentially sensitive)	Mandatory Component tests or tests of the complete board for SEE and TID	N/A	N/A	
Class-1 (potentially critical	Optional Component tests or tests of the complete board for SEE and TID	Mandatory Component tests for SEE and TID (margin to account for >1GeV)	N/A	
Class-2 (highly critical)	Optional Component tests or tests of the complete board for SEE and TID	Mandatory Component tests for SEE and TID (margin to account for >1GeV)	Mandatory Component tests for better SEL assessment	

Heavy ion tests at UCL. Single Event Latch-up threshold : < 20 MeV×cm²/mg NOT SAFE 20-40 MeV×cm²/mg CHIP ANALYSIS > 40 MeV×cm²/mg SAFE

The use of COTS components implicates

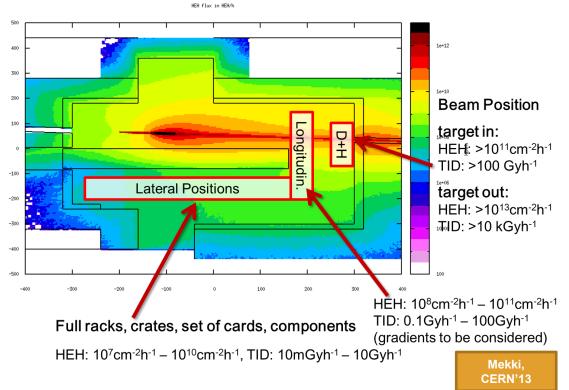
- 1. Poor component traceability (Silicon lot codes, Packaging date codes)
- 2. Lack of information concerning process changes
- 3. Necessity to assess component-2-component variability


Procurement of component lots

- 1. Silicon control when possible (price vs component criticality)
- 2. Always single packaging date code
 - Samples from each date code to be rad-tested
 - Components cheaper than rad qualification
- 3. Dedicated tests, test setups, test facilities needed...

Dedicated modular testing infrastructure

- 1. To optimize the beam time parallel testing of multiple components
- 2. To achieve high statistics of events
- 3. To reuse same setup to test many different components



Testing challenges: Have you ever thought of irradiating... 100 components... or a system... in a representative environment?

A quick overview of power converters

Significant radiation levels raging from thermal to extremely high energies COTS-based systems distributed around the accelerator ring

Design/Testing methodology

LHC power converter controls as example Use of COTS requires extensive testing

Test facilities, Test setups, Test labs

Dedicated test setups have been developed to cover project requirements CHARM was constructed to be able to test in representative conditions

When specifying your system:

Is your system really needed/can it be **simplified**? Mitigate risks by **relocating** equipment outside of radiation Use **shielding** to decrease radiation to acceptable level

When specifying your bill-of-materials:

Does your budget **allow Rad-Hard/Rad-Tol** components? Can you afford **COTS qualification/testing**? Follow strict development plan and testing methodology

If your bill-of-materials contains COTS:

Component traceability is critical (single lot), obsolescence problems Assess the spread of radiation response within component lot Test in representative conditions and configuration

Thank you for your attention

CHARM facility

http://charm.web.cern.ch/CHARM/

Test results on COTS performed by CERN

http://radwg.web.cern.ch/RadWG/Pages/summary_table.aspx